

太陽電池モジュールのPID試験

PVモジュールの高電位差による性能劣化 PID

PID (Potential Induced Degradation) は、 太陽電池モジュールのフレームとセル間の 電位差によって発生する、出力低下の 不具合です。2012年の再生可能エネルギー の全量買取制度(FIT)開始時に比べると、 太陽電池モジュールを構成する材料や セルの技術改良により、PIDの対策は強化 されてきました。しかし、最新の 太陽電池モジュールでも一部の製品では PIDへの耐性が低いものがあるため、 IEC 61215-2 Ed.2 (2021)に試験項目として 採用された様に、PIDの評価は今後も必要と

Chemitox

2023-09

されています。また、PIDでは出力低下に加え、太陽電池モジュール内のデラミネーション(層間剥離)も確認され、PIDによるデラミネーションを評価する規格IEC TS 62804-1-1 (2020)が発行されています。

結晶シリコンセルのp型セルとn型セルの出力低下のPID

結晶シリコンセルでは、 p型シリコンをベースに、表面に n 型をドープしたセルを p型セルと、逆に n 型シリコンをベースに、表面に p 型をドープしたセルを n 型セルといいます。それぞれのセルタイ プにおける PIDの違いを以下にまとめます。

p型セルの PID	n 型セルの PID
p型セルのPIDでは、フレームおよびガラス面が セルよりも高電圧となることで、表面ガラス内 のNa+イオンがセル表面に移動します。セル表 面に移動したNa+イオンは、セルの結晶の積層 欠陥からセル内部に侵入することで、電気的な シャントが形成され、電流がシャントに集中す ることで、セルの電気特性が電気抵抗に近くな ります。これをシャント型PIDといいます。	一般的なn型セルの場合も、フレームおよびガ ラス面がセルよりも高電圧となることでPIDが発 生します。ただし、p型セルとは異なり、Na+ イオンの影響は受けず、セル上面の反射防止膜 表面がプラスに帯電すると考えられています。 これにより、反射防止膜のセル側がマイナスに 帯電し、分極が発生することで、P層では自由に なった正孔が表面の負極によって再結合して発 電が阻害されます。これをポラリゼーション型 PIDといいます。
反射防止膜 n層 空乏層 p層	反射防止膜→ p層 → 空乏層 → n層 →

株式会社ケミトックス 山梨試験センターKAI 担当:坂本 清彦 Email: k-sakamoto@chemitox.co.jp 〒408-0103 山梨県北社市須玉町江草18349 Tel 0551-42-5061 Fax 0551-20-6335

太陽電池モジュールのPID試験方法

太陽電池モジュールのPID試験方法は国際規格であるIEC規格で規定されています。その中でも、結 晶シリコン太陽電池モジュールのPID試験方法をご紹介いたします。

IEC TS 62804-1およびIEC 61215-2 MQT 21は結晶シリコン太陽電池モジュールの出力低下を確認しますが、IEC 62804-1-1は結晶シリコン太陽電池のPIDによるデラミネーション(層間剥離)を確認することができます。出力低下だけでなくデラミネーションについても評価することをお勧めします。

規格名	IEC TS 62804-1		IEC 61215-2	IEC TS 62804-1-1	
測定条件	ストレス法a	ストレス法 b	MQT 21	方法 A	方法 B(推奨条件)
目的	出力低下の確認			デラミネーションの確認	
モジュール 温度	60 ±2	25 ±1	85 ±2	85 ±2	72 ±2
相対温度	85%±3% RH	60% RH 未満	85%±3% RH	85%±3% RH	95%±3% RH
試験時間	96時間	168時間	96時間	240時間±2.4時間	240時間±2.4時間
印加電圧	定格システム電圧	定格システム電圧	定格システム電圧	定格システム電圧	定格システム電圧
事前処理	なし	サンプル表面を導電 性箔で覆い、サンプ ルのフレームの接地 点に接続。受光面上 の導電性箔に高分子 マット等で30Pa以上 の均一な荷重を加え る。	なし	サンプル表面を導電性箔で覆い、サンプ ルのフレームの接地点に接続。受光面上 の導電性箔に高分子マット等で30Pa以上 の均一な荷重を加える。	
初期測定	試験開始前に以下の測定を行う。 ・光照射 ・目視検査 ・STCにおけるI-V特性測定 ・低照度でのI-V特性測定【任意】 ・湿潤リーク電流試験 ・EL検査 1.0 /scおよび0.1 /sc【任意】 ・接地連続性試験		試験開始前に以下の 測定を行う。 ・目視検査 ・初期安定化 ・STCにおけるI-V 特性測定 ・絶縁試験 ・湿潤リーク電流 試験	試験開始前に以下の測定を行う。 ・外観検査 ・湿潤リーク電流試験 ・Damp Heat試験(IEC 61215-2 MQT13)	
最終測定	試験完了後に以下の測定を行う。 〇試験後2~6時間 ・STCにおけるI-V特性測定 ・低照度でのI-V特性測定【任意】 〇試験後8時間以内 ・湿潤リーク電流試験【任意】 〇試験後2日以内 ・EL検査 1.0 /scおよび0.1 /sc【任意】 ・目視検査		試験完了後に以下の 測定を行う。 ○試験後48時間以内 ・最終安定化 ○安定化後48時間以 内 ・STCにおけるⅠ-V 特性測定 ・絶縁試験 ・湿潤リーク電流 試験	試験完了後に以下の測定を行う。 ・湿潤リーク電流試験 ・目視検査	

デラミネーション(層間剥離)の例

右の2つの画像は、実際にデラミネーションが発生した 太陽電池モジュールのセル表面の写真です。 右の画像はガラスと封止材間の剥離で、左はバスバー 周辺のセルと封止材間の剥離の状態です。 いずれも、デラミネーションの発生により、セルに 到達する光が減少し、発電効率が低下します。

Chemitox

2023-09

株式会社ケミトックス 山梨試験センターKAI 担当:坂本 清彦 Email: k-sakamoto@chemitox.co.jp 〒408-0103 山梨県北杜市須玉町江草18349 Tel 0551-42-5061 Fax 0551-20-6335