
ペロブスカイト太陽電池の 加速劣化試験結果の報告

2025年9月17-19日 スマートエネルギーWeek秋

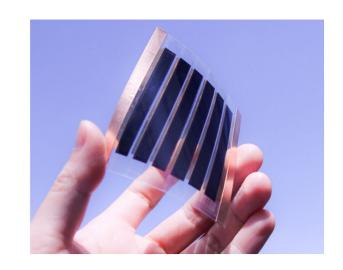
株式会社ケミトックス 栗本 晴彦 目次

- 1. ペロブスカイト太陽電池の特徴
- 2. 加速劣化試験結果の報告 (高温高湿試験、温度サイクル試験)

結晶シリコン太陽電池モジュールの構造の例

出典:フジプレアム株式会社

ペロブスカイト太陽電池とは

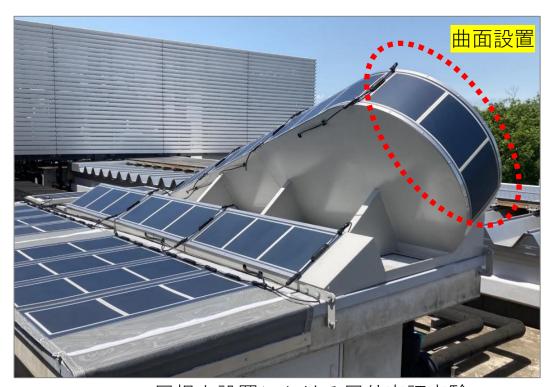

従来の太陽電池セルと比較して、

- 1発電効率
- 2軽量
- ③低コスト

などを高い水準で満たせる可能性がある。 (※ただし耐久性や大面積化などはまだまだ発展途上)

	^゚ ロフ゛ スカイト	有機薄膜	シリコン	CIGS
変換効率(セル)	~25%	~17%	~27%	~23%
コスト	$\bigcirc \to \bigcirc$	0	0	0
耐久性	$\triangle \to \bigcirc$	0	0	0
軽量	0	0	\triangle	0
フレキシブル	O	0	×	\triangle
ローラブル	0	0	×	\triangle
シースルー		0	\triangle	\triangle

ペロブスカイト太陽電池 実証試験例



Chemitox

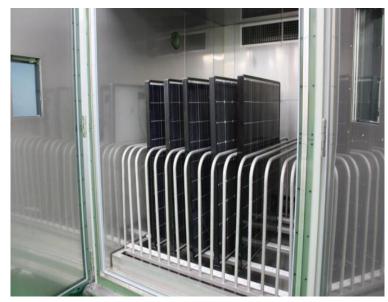
東京国際クルーズターミナルでの フィルム型ペロブスカイト実証実験(積水化学)

https://www.sekisui.co.jp/news/2024/1403365_41090.html https://toyokeizai.net/articles/-/849930?page=3

屋根上設置における屋外実証実験 (アイシン・大林組)

https://www.aisin.com/jp/news/2025/009053.html

目次


1. ペロブスカイト太陽電池の特徴

2. 加速劣化試験結果の報告 (高温高湿試験、温度サイクル試験)

ペロブスカイト太陽電池の加速劣化試験実験の報告

IEC規格に基づく太陽電池の加速劣化試験

- ・高温高湿試験(温度85°C/湿度85%RH)
- ・温度サイクル試験(温度-40°C⇔+85°Cサイクル 低湿度環境)

最大2200mmサイズ対応 環境試験チャンバー

試験ペロブスカイト太陽電池

構造:両面ガラスタイプ サイズ: 1200x600mm 最大出力:80W程度

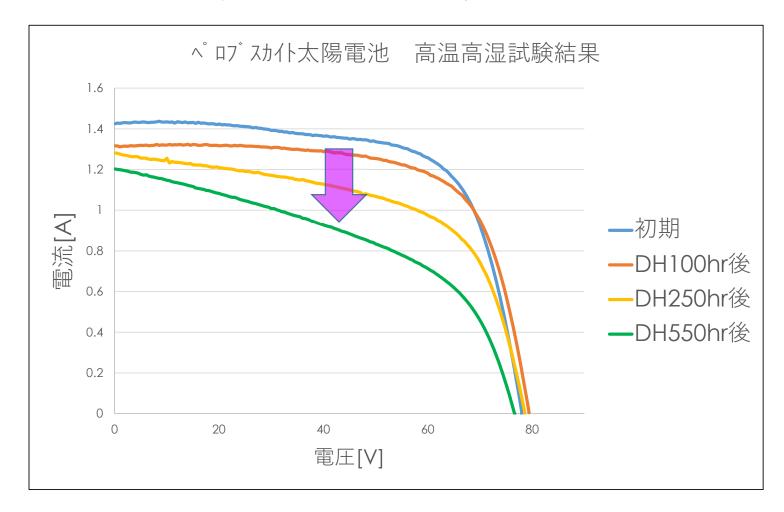
高温高湿試験・温度サイクル実験結果

• 高温高湿試験(85°C/85%RH)

(初期, 100, 250, 550 時間後で測定)

温度サイクル試験(-40°C⇔+85°C)

(初期, 20, 50, 110 サイクル後で測低。1cyc = 5hr)



試験内容	状態	短絡電流 ISC[A]	開放電圧 Voc[V]	フィルファクタ FF[%]	最大出力 Pm[W]	Pm劣化率 [%]
	初期	1.425	78.06	68.30	75.98	
高温高湿試験	DH100hr	1.331	79.52	68.83	72.84	-4.1
同一一同一里	DH250hr	1.282	78.74	58.36	58.92	<mark>-22.5</mark>
	DH550hr	1.203	76.66	46.72	43.08	<mark>-43.3</mark>
	初期	1.416	79.65	70.87	79.91	_
温度サイクル	TC20cyc	1.361	79.09	71.15	76.57	-4.2
試験	TC50cyc	1.385	79.75	70.00	77.33	-3.2
	TC110cyc	1.396	80.34	69.70	78.19	-2.1

高温高湿試験にて出力低下が進行。

温度サイクル試験では、顕著な出力低下は見られなかった。

高温高湿試験後の I-V特性の変化

状態	Pm [W]	Pm 劣化率 [%]
初期	75.98	
DH100hr	72.84	-4.1
DH250hr	58.92	<mark>-22.5</mark>
DH550hr	43.08	<mark>-43.3</mark>

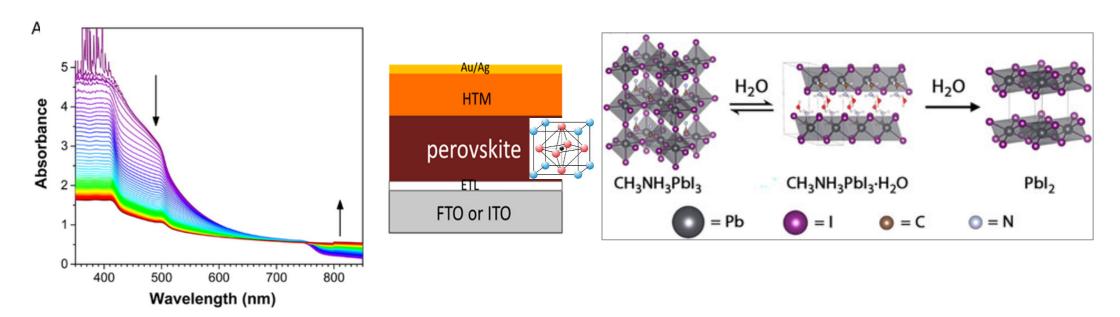
DH100h:短絡電流が減少

DH250h:FFが減少

DH550h:開放電圧も低下

水分の影響による、ペロブスカイト太陽電池の劣化の例

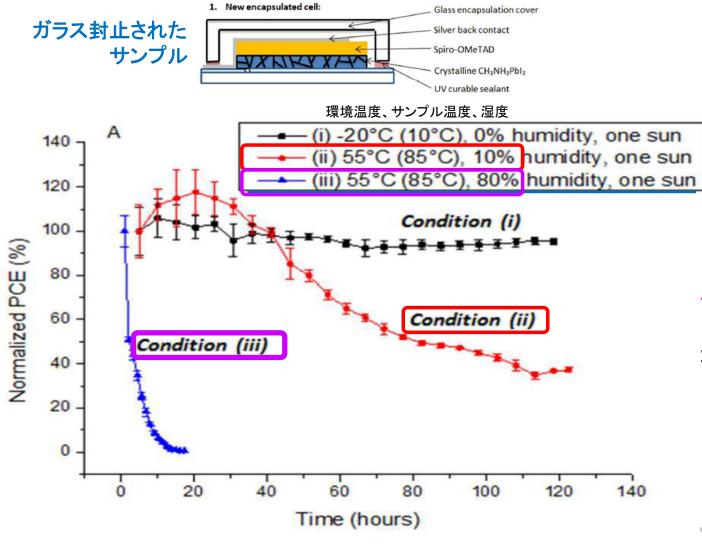
A site の有機カチオン



ペロブスカイト太陽電池の化学組成 ●A site: 有機カチオン ●B site: 金属カチオン ●X site: ハロゲンアニオン

Energy Environ. Sci., 2019, 12, 3074-3088

ペロブスカイト太陽電池における、高温高湿度による劣化の原因(一例)



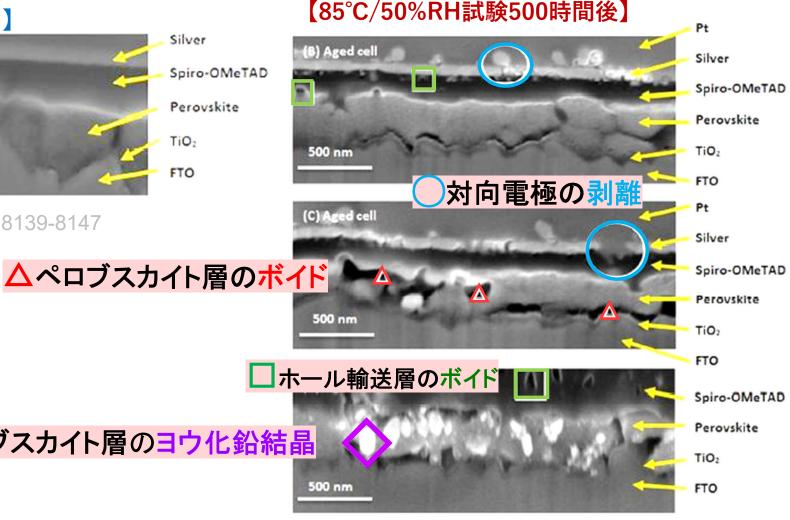
(1)[(CH₃NH₃₊)PbI₃]_n+H₂O→[(CH₃NH₃₊)_{n-1}(PbI₃)_n][H₃O₊] + CH₃NH₂ 水によるメチルアンモニウムの遊離

(2) [(CH₃NH₃₊)_{n-1}(PbI₃)_n][H₃O₊] → HI +PbI₂+ [(CH₃NH₃₊)PbI₃]_{n-1}+ H₂O ヨウ素の遊離とヨウ化鉛の生成

Nano Lett., 2014, **14**, 2584–2590

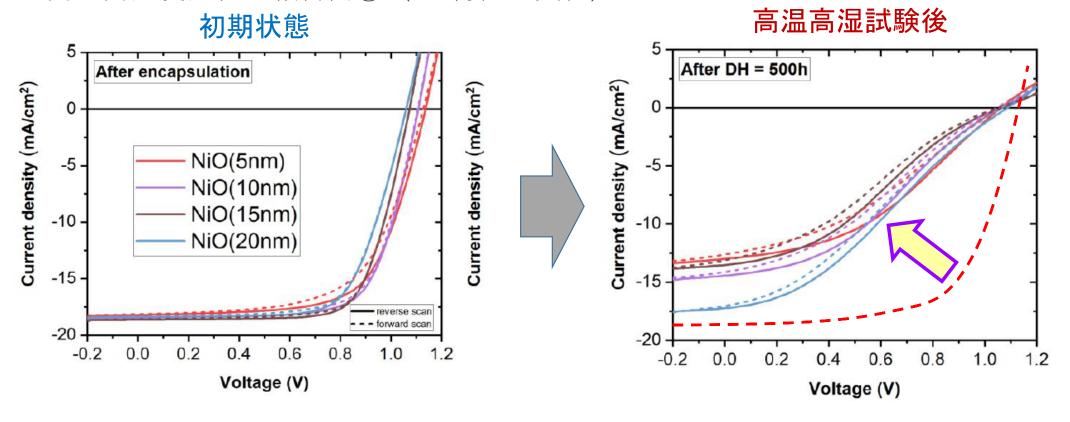
ペロブスカイト太陽電池における、高温高湿度劣化の報告例①

Chemitox


同じ温度条件でも、 高湿度環境(iii)で、 顕著に劣化が進行する。

J. Mater. Chem. A, 2015, 3, 8139-8147

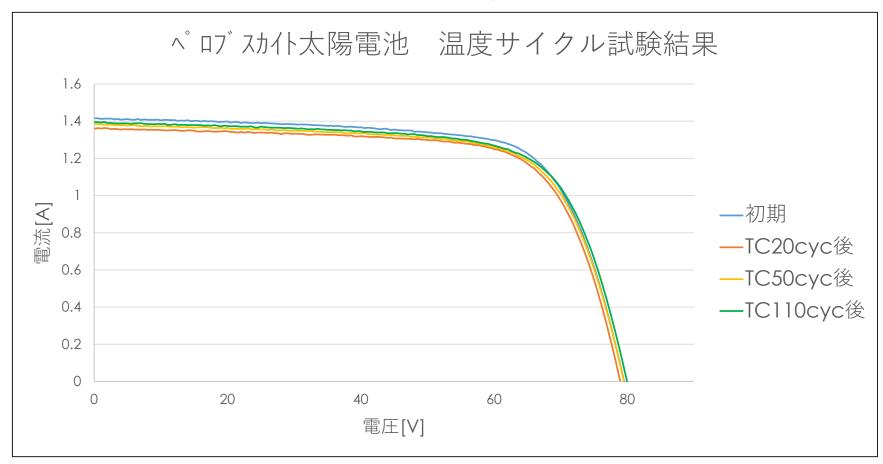
ペロブスカイト太陽電池における、高温高湿度劣化の報告例①


【初期状態(各層は正常)】 Silver (A) New cell Spiro-OMeTAD Perovskite TiO₂ 500 nm FTO

J. Mater. Chem. A, 2015, 3, 8139-8147

◇ペロブスカイト層のヨウ化鉛結晶

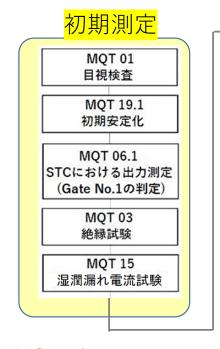
高温高湿度劣化の報告例②(I-V特性の変化)

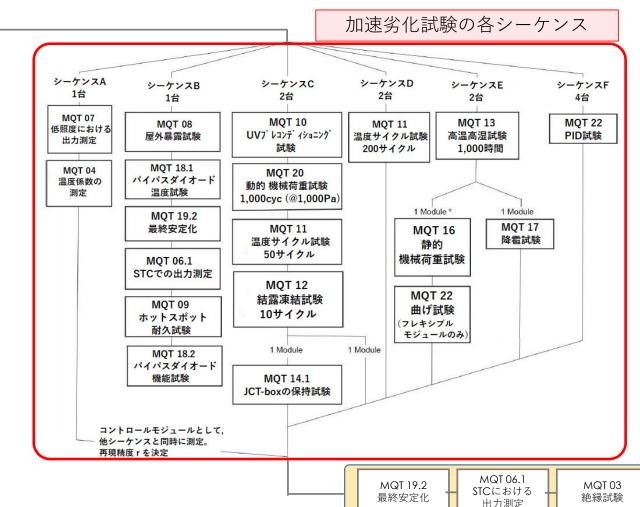


弊社実験と同様の電流値(Isc)の減少や、FFの低下が報告されている。

(※この文献では、正孔輸送層のNiOを厚く(20nm)することで劣化を多少抑制されることが報告)

"Understanding and Mitigating the Degradation of Perovskite Solar Cells Based on a Nickel Oxide Hole Transport Material during Damp Heat Testing" M. Dussouillez, /ACS Appl. Mater. Interfaces 2023, 15, 23, 27941-27951


ペロブスカイト太陽電池 温度サイクル試験前後 I-V特性の変化



温度サイクル試験 (-40℃ ⇔85℃ <u>低湿度環境</u>) では、出力低下はほぼ無かった。 **湿度の存在**が、劣化に大きく影響することを示している。

IEC 61215(2021) 試験シーケンスの全体図

ケミトックスは、 これら試験の実施が可能 (ペロブスカイト太陽電池 にも対応)

Chemitox

無断でのコピー・転載はご遠慮ください。

2025/09

Page 16

試験後測定

MQT 15

湿潤漏れ

電流試験

